Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 248: 109920, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224676

RESUMO

Fibroblast growth factor 2 (FGF2) is involved in the development and maintenance of the brain dopamine system. We previously showed that alcohol exposure alters the expression of FGF2 and its receptor, FGF receptor 1 (FGFR1) in mesolimbic and nigrostriatal brain regions, and that FGF2 is a positive regulator of alcohol drinking. Here, we determined the effects of FGF2 and of FGFR1 inhibition on alcohol consumption, seeking and relapse, using a rat operant self-administration paradigm. In addition, we characterized the effects of FGF2-FGFR1 activation and inhibition on mesolimbic and nigrostriatal dopamine neuron activation using in vivo electrophysiology. We found that recombinant FGF2 (rFGF2) increased the firing rate and burst firing activity of dopaminergic neurons in the mesolimbic and nigrostriatal systems and led to increased operant alcohol self-administration. In contrast, the FGFR1 inhibitor PD173074 suppressed the firing rate of these dopaminergic neurons, and reduced operant alcohol self-administration. Alcohol seeking behavior was not affected by PD173074, but this FGFR1 inhibitor reduced post-abstinence relapse to alcohol consumption, albeit only in male rats. The latter was paralleled by the increased potency and efficacy of PD173074 in inhibiting dopamine neuron firing. Together, our findings suggest that targeting the FGF2-FGFR1 pathway can reduce alcohol consumption, possibly via altering mesolimbic and nigrostriatal neuronal activity.


Assuntos
Dopamina , Fator 2 de Crescimento de Fibroblastos , Ratos , Masculino , Animais , Dopamina/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Etanol/farmacologia , Etanol/metabolismo , Consumo de Bebidas Alcoólicas/genética , Recidiva , Área Tegmentar Ventral
2.
Neuropsychopharmacology ; 44(2): 415-424, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008470

RESUMO

Neuroadaptations in the brain reward system caused by excessive alcohol intake, lead to drinking escalation and alcohol use disorder phenotypes. Activity-dependent neuroprotective protein (ADNP) is crucial for brain development, and is implicated in neural plasticity in adulthood. Here, we discovered that alcohol exposure regulates Adnp expression in the mesolimbic system, and that Adnp keeps alcohol drinking in moderation, in a sex-dependent manner. Specifically, Sub-chronic alcohol treatment (2.5 g/kg/day for 7 days) increased Adnp mRNA levels in the dorsal hippocampus in both sexes, and in the nucleus accumbens of female mice, 24 h after the last alcohol injection. Long-term voluntary consumption of excessive alcohol quantities (~10-15 g/kg/24 h, 5 weeks) increased Adnp mRNA in the hippocampus of male mice immediately after an alcohol-drinking session, but the level returned to baseline after 24 h of withdrawal. In contrast, excessive alcohol consumption in females led to long-lasting reduction in hippocampal Adnp expression. We further tested the regulatory role of Adnp in alcohol consumption, using the Adnp haploinsufficient mouse model. We found that Adnp haploinsufficient female mice showed higher alcohol consumption and preference, compared to Adnp intact females, whereas no genotype difference was observed in males. Importantly, daily intranasal administration of the ADNP-snippet drug candidate NAP normalized alcohol consumption in Adnp haploinsufficient females. Finally, female Adnp haploinsufficient mice showed a sharp increase in alcohol intake after abstinence, suggesting that Adnp protects against relapse in females. The current data suggest that ADNP is a potential novel biomarker and negative regulator of alcohol-drinking behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Etanol/farmacologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...